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Variational principles for magnetohydrodynamics have been introduced by previous
authors both in Lagrangian and Eulerian form. In this paper we introduce
simpler Eulerian variational principles from which all the relevant equations of
barotropic magnetohydrodynamics can be derived. The variational principle is given
in terms of six independent functions for non-stationary barotropic flows with trivial
topologies and three independent functions for stationary barotropic flows. This is
less than the seven variables which appear in the standard equations of barotropic
magnetohydrodynamics, which are the magnetic field B the velocity field v and the
density ρ.

For non-trivial topologies it is necessary to assume that some of the variables
introduced in the non-stationary formalism are non-single-valued. That is, it is
necessary to introduce a number of branch cuts in order to define single-valued
branches of the field variables. In turn, these cuts along with the six field variables
constitute an extended number of dynamic variables. The number of cuts necessary
depends on the flow. The relations between barotropic magnetohydrodynamics
topological constants and the functions of the present formalism will be elucidated.

The equations obtained for non-stationary barotropic magnetohydrodynamics
resemble the equations of Frenkel et al. (Phys. Lett. A, vol. 88, 1982, p. 461). The
connection between the Hamiltonian formalism introduced in Frenkel et al. (1982)
and the present Lagrangian formalism (with Eulerian variables) will be discussed.

1. Introduction
Variational principles for magnetohydrodynamics have been introduced by previous

authors in Lagrangian and Eulerian form. Sturrock (1994) has discussed in his
book a Lagrangian variational formalism for magnetohydrodynamics. Vladimirov &
Moffatt (1995) in a series of papers have discussed an Eulerian variational principle
for incompressible magnetohydrodynamics. However, their variational principle
contained three functions in addition to the seven variables which appear in the
standard equations of magnetohydrodynamics, which are the magnetic field B the
velocity field v and the density ρ. Kats (2003) has generalized Moffatt’s work for
compressible non-barotropic flows but without reducing the number of functions and
the computational load. Moreover, Kats has shown that the variables he suggested
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can be utilized to describe the motion of arbitrary discontinuity surfaces (Kats &
Kontorovich 1997; Kats 2001). Sakurai (1979) has introduced a two-function Eulerian
variational principle for force-free magnetohydrodynamics and used it as the basis of
a numerical scheme; his method is discussed in Sturrock (1994). A method of solving
the equations for those two variables was introduced by Yang, Sturrock & Antiochos
(1986).

In this work we will combine the Lagrangian of Sturrock (1994) with the
Lagrangian of Sakurai (1979) to obtain an Eulerian Lagrangian principle which will
depend on only six functions. The variational derivative of this Lagrangian will
give us all the equations needed to describe barotropic magnetohydrodynamics
without any additional constraints. The equations obtained resemble the equations
of Frenkel, Levich & Stilman (1982) (see also Zakharov & Kuznetsov 1997). The
connection between the Hamiltonian formalism introduced in Frenkel et al. (1982)
and the present Lagrangian formalism (with Eulerian variables) will be discussed.
Furthermore, we will show that for stationary flows three functions will suffice in
order to describe a Lagrangian principle for barotropic magnetohydrodynamics. The
non-single-valuedness of the functions appearing in the reduced representation of
non-stationary barotropic magnetohydrodynamics will be discussed in particular with
connection to the topological invariants of magnetic helicities and cross-helicities. It
will be shown how the conservation of cross-helicity can be easily generated using
the Noether theorem and the variables introduced in this paper.

It should be emphasized that for non-trivial topologies it is necessary to assume
that some of the variables introduced in the non stationary formalism are non-single-
valued. That is, it is necessary to introduce a number of branch cuts in order to define
single-valued branches of the field variables. In turn, these cuts along with the six
field variables constitute an extended number of dynamic variables. The number of
necessary cuts depends on the flow.

Owing to space limitations this paper is concerned only with barotropic magneto-
hydrodynamics. Variational principles of non-barotropic magnetohydrodynamics can
be found in the work of Bekenstein & Oron (2000) in terms of 15 functions and
Kats (2003) in terms of 20 functions. We suspect that this number can be somewhat
reduced. Moreover, in a remarkable paper Kats (2004) (section IV, E) it is shown
that there is a large symmetry group (gauge freedom) associated with the choice
of those functions; this implies that the number of degrees of freedom can be
reduced.

We anticipate applications of this study both to linear and nonlinear stability
analysis of known barotropic magnetohydrodynamic configurations (Vladimirov,
Moffatt & Ilin 1996, 1997, 1999; Alaguer et al. 1988) and for designing efficient
numerical schemes for integrating the equations of magnetohydrodynamics (Yahalom,
2003; Yahalom & Pinhasi 2003; Yahalom, Pinhasi & Kopylenko 2005; Ophir et al.
2005).

The plan of this paper is as follows: first we introduce the standard notation
and equations of barotropic magnetohydrodynamics. Next we review the Lagrangian
variational principle of barotropic magnetohydrodynamics. This is followed by a
review of the Eulerian variational principles of force-free magnetohydrodynamics.
After those introductory sections we will present the six-function Eulerian variational
principles for non-stationary magnetohydrodynamics. A derivation of the canonical
momenta of the generalized coordinates appearing in the Lagrangian allows us to
derive the system’s Hamiltonian which resembles the Hamiltonian introduced by
Frenkel et al. (1982). This is followed by the derivation of a variational principle for
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stationary magnetohydrodynamics. A discussion related to the magnetohydrodynamic
topological constants concludes our paper.

2. The standard formulation of barotropic magnetohydrodynamics
2.1. Basic equations

The standard set of equations solved for barotropic magnetohydrodynamics are

∂ B
∂t

= ∇ × (v × B), (2.1)

∇ · B = 0, (2.2)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.3)

ρ
dv

dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p(ρ) +

(∇ × B) × B
4π

. (2.4)

The following notation is utilized: ∂/∂t is the temporal partial derivative, d/dt is the
temporal material derivative and ∇ has its standard meaning in vector calculus. B is
the magnetic field vector, v is the velocity field vector and ρ is the fluid density. Finally
p(ρ) is the pressure, which we assume depends on the density alone (barotropic case).
The justification for these equations and the conditions under which they apply can
be found in standard books on magnetohydrodynamics (see for example Sturrock
1994). Equation (2.1) describes the fact that the magnetic field lines are moving
with the fluid elements (‘frozen’ magnetic field lines), (2.2) describes the fact that the
magnetic field is solenoidal, (2.3) describes the conservation of mass and (2.4) is the
Euler equation for a fluid in which both pressure and Lorentz magnetic forces apply.
The term

J =
∇ × B

4π
(2.5)

is the electric current density which is not connected to any mass flow. The number of
independent variables for which one needs to solve is seven (v, B, ρ) and the number
of equations (2.1), (2.3), (2.4) is also seven. Notice that (2.2) is a condition on the
initial B field and is satisfied automatically for any other time due to (2.1). Also
notice that p(ρ) is not a variable, rather it is a given function of ρ.

2.2. Lagrangian variational principle of magnetohydrodynamics

A Lagrangian variational principle for barotropic magnetohydrodynamics has been
discussed by a number of authors (see for example Sturrock 1994) and an outline of
this approach is given below. Consider the action:

A ≡
∫

L d3x dt,

L ≡ ρ
(

1
2
v2 − ε(ρ)

)
− B2

8π
,

⎫
⎪⎬
⎪⎭

(2.6)

in which ε(ρ) is the specific internal energy. A variation in any quantity F for a fixed
position r is denoted as δF , hence:

δA =

∫
δL d3x dt,

δL = δρ
(

1
2
v2 − w(ρ)

)
+ ρv · δv − B · δB

4π
,

⎫
⎪⎬
⎪⎭

(2.7)

in which w = ∂(ερ)/∂ρ is the specific enthalpy.
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A change in the position of a fluid element located at a position r at time t is given
by ξ (r, t). A mass-conserving variation of ρ takes the form

δρ = −∇ · (ρξ ) (2.8)

and a magnetic-flux-conserving variation takes the form

δB = ∇ × (ξ × B). (2.9)

A change involving a local variation coupled with a change of element position of
the quantity F is given by

�F = δF + (ξ · ∇)F, (2.10)

hence

�v = δv + (ξ · ∇)v. (2.11)

However, since

�v = �
dr
dt

=
d�r
dt

=
dξ

dt
, (2.12)

we obtain

δv =
dξ

dt
− (ξ · ∇)v =

∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (2.13)

Introducing the result of (2.8), (2.9), (2.13) into (2.7) and integrating by parts we
arrive at the result

δA =

∫
d3xρv · ξ |t1t0

+

∫
dt

{∮
dS ·

[
− ρξ

(
1
2
v2 − w(ρ)

)
+ ρv(v · ξ ) +

1

4π
B × (ξ × B)

]

+

∫
d3xξ ·

[
− ρ∇w − ∂(ρv)

∂t
− ∂(ρvvk)

∂xk

− 1

4π
B × (∇ × B)

]}
, (2.14)

in which a summation convention is assumed. Taking into account the continuity
(2.3) we obtain

δA =

∫
d3xρv · ξ |t1t0

+

∫
dt

{∮
dS ·

[
− ρξ

(
1
2
v2 − w(ρ)

)
+ ρv(v · ξ ) +

1

4π
B × (ξ × B)

]

+

∫
d3xξ ·

[
− ρ∇w − ρ

∂v

∂t
− ρ(v · ∇)v − 1

4π
B × (∇ × B)

]}
, (2.15)

hence we see that if δA = 0 for a ξ vanishing at the initial and final times and on the
surface of the domain but otherwise arbitrary then Euler’s (2.4) is satisfied (taking
into account that in the barotropic case ∇w = ∇p/ρ). Note that the vanishing of ξ

on the surface of the domain is only a sufficient condition for Euler’s equations to be
satisfied. It is certainly not a necessary condition. In scenarios such that the boundary
is impermeable and perfectly conducting, it suffices to assume that only the normal
component of ξ is zero at the boundary.
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Although the variational principle does give us the correct dynamical equation for
an arbitrary ξ , it has the following deficiencies:

(a) Although ξ is quite arbitrary the variations of δρ and δB are not. They are
defined by the conditions given in (2.8) and (2.9). This property is not useful for
numerical schemes since ξ must be a small quantity.

(b) Only (2.4) is derived from the variational principle; the other equations that
are needed: (2.1), (2.2) and (2.3), are separate assumptions. Moreover (2.3) is needed
in order to derive Euler’s (2.4) from the variational principle. All this makes the
variational principle less useful.

What is desired is a variational principle from which all equations of motion can
be derived and for which no assumptions on the variations are needed; this will be
discussed in the following sections.

Note also two recent interesting papers by Prix (2004, 2005) which discuss the
implications of a time shift τ in addition to the spatial shift ξ (r, t) and also consider
the case of multi-fluid magnetohydrodynamics.

3. Sakurai’s variational principle of force-free magnetohydrodynamics
Force-free magnetohydrodynamics is concerned with the case that both the pressure

and inertial terms in Euler (2.4) are physically insignificant. Hence the Euler equations
can be written in the form

(∇ × B) × B
4π

= J × B = 0. (3.1)

In order to describe force-free fields Sakurai (1979) has proposed representing the
magnetic field in the following form:

B = ∇χ × ∇η. (3.2)

Hence B is orthogonal both to ∇χ and ∇η. A similar representation was suggested
by Dungey (1958) but not in the context of variational analysis. Frenkel et al. (1982)
discuss the validity of the above representation and have concluded that for a vector
field in the Euclidean space R3 it does always exist locally but not always globally.
Also note that either χ or η (or both) can be non-single-valued functions (see Frenkal
et al. 1982, equation 20).

Both χ and η are Clebsch-type comoving scalar fields satisfying the equations

dχ

dt
= 0,

dη

dt
= 0. (3.3)

It can be easily shown that provided that B is in the form given in (3.2), and (3.3) is
satisfied, then both (2.1) and (2.2) are satisfied. Since according to (3.1) both ∇ × B
and B are parallel it follows that (3.1) can be written as

J · ∇χ = 0, J · ∇η = 0. (3.4)

Sakurai (1979) has introduced an action principle from which (3.4) can be derived:

AS ≡
∫

LS d3x dt,

LS ≡ B2

8π
=

(∇χ × ∇η)2

8π
.

⎫
⎪⎬
⎪⎭

(3.5)



240 A. Yahalom and D. Lynden-Bell

Taking the variation of (3.5) we obtain

δAS =

∫
δLS d3x dt,

δLS =
B
4π

· (∇δχ × ∇η + ∇χ × ∇δη).

⎫
⎪⎬
⎪⎭

(3.6)

Integrating by parts and using the theorem of Gauss one obtains the result

δAS =

∮
dS ·

[
(δχ∇η − δη∇χ) × B

4π

]
+

∫
dΣ ·

[
([δχ]∇η − [δη]∇χ) × B

4π

]

+

∫
d3x[δχ(∇η · J) − δη(∇χ · J)] (3.7)

in which
∫

dΣ represents an integral along the cut and [δf ] represents the
discontinuity of the variations of non-single-valued functions. We introduce cuts
in the domain because we are not sure at this stage whether the χ and η functions
are single-valued or multiple-valued. We shall show later that χ can be defined as
a single-valued function while η can be either single-valued or non-single-valued. In
the latter case a sufficient condition for the ‘cut’ term to vanish is the usage of a
single-valued δη, that is we may vary η only using single-valued variations. Hence if
δAS = 0 for arbitrary variation δχ, δη that vanish on the boundary of the domain
(including the cut) one recovers the force-free Euler equations (3.4).

Although this approach is better than the one described in (2.6) in the previous
section in the sense that the form of the variations δχ, δη is not constrained, it has
some limitations as follows:

(a) Sakurai’s approach by design is only meant to deal with force-free
magnetohydrodynamics; for more general magnetohydrodynamics it is not adequate.

(b) Sakurai’s action given by (3.5) contains all the relevant physical equations only
if the configuration is static (v = 0). If the configuration is not static one needs to
supply an additional two equations (3.3) to the variational principle.

4. Simplified variational principle of non-stationary barotropic
magnetohydrodynamics

In this section we will combine the approaches described in the previous
sections in order to obtain a variational principle of non-stationary barotropic
magnetohydrodynamics such that all the relevant barotropic magnetohydrodynamic
equations can be derived from using unconstrained variations. The approach is based
on a method first introduced by Seliger & Whitham (1968). Consider the action

A ≡
∫

L d3x dt,

L ≡ L1 + L2, L1 ≡ ρ
(

1
2
v2 − ε(ρ)

)
+

B2

8π
,

L2 ≡ ν

[
∂ρ

∂t
+ ∇ · (ρv)

]
− ρα

dχ

dt
− ρβ

dη

dt
− B

4π
· (∇χ × ∇η).

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.1)
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Obviously ν, α, β are Lagrange multipliers which were inserted in such a way that
the variational principle will yield the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, ρ

dχ

dt
= 0, ρ

dη

dt
= 0. (4.2)

It is not assumed that ν, α, β are single-valued. Provided ρ is not null these are just
the continuity equation (2.3) and the conditions that Sakurai’s functions are comoving
as in (3.3). Taking the variational derivative with respect to B we see that

B = B̂ ≡ ∇χ × ∇η. (4.3)

Hence B is in Sakurai’s form and satisfies (2.2). By virtue of (4.2) we see that B
must also satisfy (2.1). For the time being we have showed that all the equations
of barotropic magnetohydrodynamics can be obtained from the above variational
principle except Euler’s equations. We will now show that Euler’s equations can
be derived from the above variational principle as well. Let us take an arbitrary
variational derivative of the above action with respect to v; this will result in

δvA =

∫
d3x dtρδv · [v − ∇ν − α∇χ − β∇η] +

∮
dS · δvρν +

∫
dΣ · δvρ[ν]. (4.4)

The integral
∮

dS · δvρν vanishes in many physical scenarios. In the case of
astrophysical flows it will vanish since ρ = 0 on the flow boundary; in the case
of a fluid contained in a vessel no-flux boundary conditions δv · n̂ = 0 are induced
(n̂ is a unit vector normal to the boundary). The surface integral

∫
dΣ on the cut

of ν vanishes in the case that the flow has zero cross-helicity (see § 7) since in this
case ν is single-valued and [ν] = 0 . In the case that that the flow has non-zero
cross-helicity, ν is not single-valued (see § 7); in this case only a Kutta-type velocity
perturbation (Yahalom et al. 2005) is parallel to the cut will cause the cut integral to
vanish.

Provided that the surface integrals do vanish and that δvA = 0 for an arbitrary
velocity perturbation we see that v must have the following form:

v = v̂ ≡ ∇ν + α∇χ + β∇η. (4.5)

Let us now take the variational derivative with respect to the density ρ; we obtain

δρA =

∫
d3x dtδρ

[
1
2
v2 − w − ∂ν

∂t
− v · ∇ν

]

+

∮
dS · vδρν +

∫
dΣ · vδρ[ν] +

∫
d3xνδρ|t1t0 . (4.6)

Hence provided that
∮

dS · vδρν vanishes on the boundary of the domain and∫
dΣ · vδρ[ν] vanishes on the cut of ν, in the case that ν is not single-valued

(which entails either a Kutta-type condition for the velocity or a vanishing density
perturbation on the cut) and ∂ρ vanishes at initial and final times, the following
equation must be satisfied:

dν

dt
= 1

2
v2 − w. (4.7)
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Finally we have to calculate the variation with respect to both χ and η; this will lead
us to the following results:

δχA =

∫
d3x dtδχ

[
∂(ρα)

∂t
+ ∇ · (ραv) − ∇η · J

]
+

∮
dS ·

[
B
4π

× ∇η − vρα

]
δχ

+

∫
dΣ ·

[
B
4π

× ∇η − vρα

]
[δχ] −

∫
d3xραδχ |t1t0, (4.8)

δηA =

∫
d3x dtδη

[
∂(ρβ)

∂t
+ ∇ · (ρβv) + ∇χ · J

]
+

∮
dS ·

[
∇χ × B

4π
− vρβ

]
δη

+

∫
dΣ ·

[
∇χ × B

4π
− vρβ

]
[δη] −

∫
d3xρβδη|t1t0 . (4.9)

Provided that the correct temporal and boundary conditions are met with respect to
the variations δχ and δη on the domain boundary and on the cuts in the case that
some (or all) of the relevant functions are non-single-valued, we obtain the following
set of equations:

dα

dt
=

∇η · J
ρ

,
dβ

dt
= −∇χ · J

ρ
, (4.10)

in which the continuity equation (2.3) was taken into account. By correct temporal
conditions we mean that both δη and δχ vanish at initial and final times. As boundary
conditions which are sufficient to make the boundary term vanish we can consider
the case that the boundary is at infinity and both B and ρ vanish. Another possibility
is that the boundary is impermeable and perfectly conducting. A sufficient condition
for the integral over the ‘cuts’ to vanish is to use variations δη and δχ which are
single-valued. It will be shown later that χ can always be taken to be single-valued,
hence taking δχ to be single-valued is no restriction at all. In some topologies η is
not single-valued and in those cases a single-valued restriction on δη is sufficient to
make the cut term null.

4.1. Euler’s equations

We shall now show that a velocity field given by (4.5), such that the equations for
α, β, χ, η, ν satisfy the corresponding equations (4.2), (4.7), (4.10) must satisfy Euler’s
equations. Let us calculate the material derivative of v:

dv

dt
=

d∇ν

dt
+

dα

dt
∇χ + α

d∇χ

dt
+

dβ

dt
∇η + β

d∇η

dt
. (4.11)

It can be easily shown that

d∇ν

dt
= ∇dν

dt
− ∇vk

∂ν

∂xk

= ∇
(

1
2
v2 − w

)
− ∇vk

∂ν

∂xk

,

d∇η

dt
= ∇dη

dt
− ∇vk

∂η

∂xk

= −∇vk

∂η

∂xk

,

d∇χ

dt
= ∇dχ

dt
− ∇vk

∂χ

∂xk

= −∇vk

∂χ

∂xk

,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.12)

in which xk is a Cartesian coordinate and a summation convention is assumed.
Equations (4.2), (4.7) were used in the above derivation. Inserting the result from
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(4.12), (4.10) into (4.11) yields

dv

dt
= −∇vk

(
∂ν

∂xk

+ α
∂χ

∂xk

+ β
∂η

∂xk

)
+ ∇

(
1
2
v2 − w

)

+
1

ρ
((∇η · J)∇χ − (∇χ · J)∇η)

= −∇vkvk + ∇
((

1
2
v2 − w) +

1

ρ
J × (∇χ × ∇η

))

= −∇p

ρ
+

1

ρ
J × B, (4.13)

in which we have used both (4.5) and (4.3). This of course proves that the
barotropic Euler equations can be derived from the action given in (4.1) and hence
all the equations of barotropic magnetohydrodynamics can be derived from the
above action without restricting the variations in any way except on the relevant
boundaries and cuts. The reader should take into account that the topology of the
magnetohydrodynamic flow is conserved, hence cuts must be introduced into the
calculation as initial conditions.

4.2. Simplified action

One might argue here that the paper is misleading. We have declared that we shall
present a simplified action for barotropic magnetohydrodynamics but instead have
added five more functions α, β, χ, η, ν to the standard set B, v, ρ. In the following
we will show that this is not so and the action given in (4.1) in a form suitable
for a pedagogic presentation can indeed be simplified. It is easy to show that the
Lagrangian density appearing in (4.1) can be written in the form

L = −ρ

[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ ε(ρ)

]
+ 1

2
ρ[(v − v̂)2 − (v̂)2]

+
1

8π
[(B − B̂)2 − (B̂)2] +

∂(νρ)

∂t
+ ∇ · (νρv), (4.14)

in which v̂ is a shorthand notation for ∇ν + α∇χ + β∇η (see (4.5)) and B̂ is a
shorthand notation for ∇χ × ∇η (see (4.3)). Thus L has four contributions:

L = L̂ + Lv + LB + Lboundary,

L̂ ≡ −ρ

[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ ε(ρ) + 1

2
(∇ν + α∇χ + β∇η)2

]
− 1

8π
(∇χ × ∇η)2

Lv ≡ 1
2
ρ(v − v̂)2, LB ≡ 1

8π
(B − B̂)2,

Lboundary ≡ ∂(νρ)

∂t
+ ∇ · (νρv).

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

The only term containing v is Lv†, and it can easily be seen that this term will
lead, after we nullify the variational derivative with respect to v, to (4.5) but will
otherwise have no contribution to other variational derivatives. Similarly the only
term containing B is LB and it can easily be seen that this term will lead, after

† Lboundary also depends on v but being a boundary term in space and time it does not contribute
to the derived equations.
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B

μ = μi + λ

μ = μi

Figure 1. A thin tube surrounding a magnetic field line.

we nullify the variational derivative, to (4.3) but will have no contribution to other
variational derivatives. Also notice that the term Lboundary contains only complete
partial derivatives and thus cannot contribute to the equations although it can change
the boundary conditions. Hence we see that (4.2), (4.7) and (4.10) can be derived using

the Lagrangian density L̂[α, β, χ, η, ν, ρ] in which v̂ replaces v and B̂ replaces B
in the relevant equations. Furthermore, after integrating the six equations (4.2), (4.7),
(4.10) we can insert the potentials α, β, χ, η, ν into (4.5) and (4.3) to obtain the physical
quantities v and B. Hence, the general barotropic magnetohydrodynamic problem
is reduced from seven equations (2.1), (2.3), (2.4) and the additional constraint (2.2)
to a problem of six first-order (in the temporal derivative) unconstrained equations.

Moreover, the entire set of equations can be derived from the Lagrangian density L̂
which is what we were aiming to prove.

It should be emphasized that for non-trivial topologies it is necessary to assume
that some of the variables introduced in the non-stationary formalism are non-single-
valued. That is, it is necessary to introduce a number of branch cuts in order to define
single-valued branches of the field variables. In turn, these cuts along with the six
field variables constitute an extended number of dynamic variables. The number of
necessary cuts depends on the flow and for complicated field topologies can lead to
detailed book-keeping.

4.3. The inverse problem

In § 4.2 we have shown that, given a set of functions α, β, χ, η, ν satisfying the set
of equations described in the previous subsections, one can insert those functions
into (4.5) and (4.3) to obtain the physical velocity v and magnetic field B. In this
subsection we will address the inverse problem; that is, suppose we are given the
quantities v, B and ρ, then how can one calculate the potentials α, β, χ, η, ν? The
treatment in this section will follow closely an analogous treatment for non-magnetic
fluid dynamics given by Lynden-Bell & Katz (1981).

Consider a thin tube surrounding a magnetic field line as described in figure 1; the
magnetic flux contained within the tube is

�Φ =

∫
B · dS (4.16)
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and the mass contained with the tube is

�M =

∫
ρdl · dS, (4.17)

in which dl is a length element along the tube. Since the magnetic field lines move
with the flow by virtue of (2.1) both the quantities �Φ and �M are conserved and
since the tube is thin we may define the conserved magnetic load:

λ =
�M

�Φ
=

∮
ρ

B
dl, (4.18)

in which the above integral is performed along the field line. Obviously the parts of
the line which go out of the flow to regions in which ρ = 0 have a null contribution
to the integral. Notice that λ is a single-valued function that can be measured in
principle. Since λ is conserved it satisfies the equation

dλ

dt
= 0. (4.19)

By construction, surfaces of constant magnetic load move with the flow and contain
magnetic field lines. Hence the gradient to such surfaces must be orthogonal to the
field line:

∇λ · B = 0. (4.20)

For a discussion of the possibility of surface- and volume-filling fields and the
complications in the definition of λ then see § 6.3. Now consider an arbitrary comoving
point on the magnetic field line and denote it by i, and consider an additional
comoving point on the magnetic field line and denote it by r . The integral

μ(r) =

∫ r

i

ρ

B
dl + μ(i) (4.21)

is also a conserved quantity which we may denote following Lynden-Bell & Katz
(1981) as the magnetic metage. μ(i) is an arbitrary number which can be chosen
differently for each magnetic line. By construction

dμ

dt
= 0. (4.22)

Also it is easy to see that by differentiating along the magnetic field line we obtain

∇μ · B = ρ. (4.23)

Notice that μ will be generally a non-single-valued function; we will show later in this
paper that symmetry to translations in μ will generate through the Noether theorem
the conservation of the magnetic cross-helicity.

At this point we have two comoving coordinates of flow, namely λ, μ; obviously in
a three-dimensional flow we also have a third coordinate. However, before defining
the third coordinate we will find it useful to work not directly with λ but with a
function of λ. Now consider the magnetic flux within a surface of constant load
Φ(λ) as described in figure 2 (the figure was taken from Lynden-Bell & Katz 1981).
The magnetic flux is a conserved quantity and depends only on the load λ of the
surrounding surface. Now we define the quantity

χ =
Φ(λ)

2π
. (4.24)
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λm

λ

λ + dλ

Figure 2. Surfaces of constant load (Lynden-Bell & Katz 1981).

Obviously χ satisfies the equations

dχ

dt
= 0, B · ∇χ = 0, (4.25)

We will immediately show that this function is identical to Sakurai’s function defined
in (3.2). Let us now define an additional comoving coordinate η∗: since ∇μ is not
orthogonal to the B lines we can choose ∇η∗ to be orthogonal to the B lines and not
in the direction of the ∇χ lines, that is we choose η∗ not to depend only on χ . Since
both ∇η∗ and ∇χ are orthogonal to B, B must take the form

B = A∇χ × ∇η∗. (4.26)

However, using (2.2) we have

∇ · B = ∇A · (∇χ × ∇η∗) = 0, (4.27)

which implies that A is a function of χ, η∗. Now we can define a new comoving
function η such that

η =

∫ η∗

0

A(χ, η
′∗) dη

′∗,
dη

dt
= 0. (4.28)

In terms of this function we recover the Sakurai presentation defined in (3.2):

B = ∇χ × ∇η. (4.29)

Hence we have shown how χ, η can be constructed for a known B, ρ. Notice
however, that η is defined in a non-unique way since one can redefine η for example
by performing the following transformation: η → η + f (χ) in which f (χ) is an
arbitrary function. The comoving coordinates χ, η serve as labels of the magnetic
field lines. Moreover the magnetic flux can be calculated as

Φ =

∫
B · dS =

∫
dχdη. (4.30)

In the case that the surface integral is performed inside a load contour we obtain

Φ(λ) =

∫

λ

dχ dη = χ

∫

λ

dη =

{
χ[η]
χ(ηmax − ηmin).

(4.31)
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There are two cases involved; in one case the load surfaces are topological cylinders,
and η is not single-valued and hence we obtain the upper value for Φ(λ). In a second
case the load surfaces are topological spheres; in this case η is single-valued and has
minimal ηmin and maximal ηmax values. Hence the lower value of Φ(λ) is obtained.
For example in some cases η is identical to twice the latitude angle θ . In those cases
ηmin = 0 (value at the ‘north pole’) and ηmax = 2π (value at the ‘south pole’).

Comparing the above equation with (4.24) we derive that η can be either single-
valued or not-single-valued and that its discontinuity across its cut in the non-single-
valued case is [η] = 2π.

We will now show how the potentials α, β, ν can be derived. Let us calculate the
vorticity ω of the flow. By taking the curl of (4.5) we obtain

ω ≡ ∇ × v = ∇α × ∇χ + ∇β × ∇η. (4.32)

The following identities are derived:

ω · ∇χ = (∇β × ∇η) · ∇χ = −∇β · B, (4.33)

ω · ∇η = (∇α × ∇χ) · ∇η = ∇α · B. (4.34)

Now let us perform integrations along B lines starting from an arbitrary point
denoted as i to another arbitrary point denoted as r .

β(r) = −
∫ r

i

ω · ∇χ

B
dl + β(i), (4.35)

α(r) =

∫ r

i

ω · ∇η

B
dl + α(i). (4.36)

The numbers α(i), β(i) can be chosen in an arbitrary way for each magnetic field
line. Hence we have derived (in a non-unique way) the values of the α, β functions.
Finally we can use (4.5) to derive the function ν for any point s within the flow:

ν(s) =

∫ s

i

(v − α∇χ − β∇η) · dr + ν(i), (4.37)

in which i is any arbitrary point within the flow. The result will not depend on the
trajectory taken in the case that ν is single-valued. If ν is not single-valued one should
introduce a cut which the integration trajectory should not cross.

4.4. Stationary barotropic magnetohydrodynamics

Stationary flows are a unique phenomenon of Eulerian fluid dynamics which have
no counterpart in Lagrangian fluid dynamics. The stationary flow is defined by
the fact that the physical fields v, B, ρ do not depend on the temporal coordinate.
This, however, does not imply that the corresponding potentials α, β, χ, η, ν are all
functions of spatial coordinates alone. Moreover, it can be shown that choosing the
potentials in such a way will lead to erroneous results in the sense that the stationary

equations of motion cannot be derived from the Lagrangian density L̂ given in (4.15).
However, this problem can be amended easily as follows. Let us choose α, β, χ, ν to
depend on the spatial coordinates alone. Let us choose η such that

η = η̄ − t, (4.38)

in which η̄ is a function of the spatial coordinates. The Lagrangian density L̂ given
in (4.15) will take the form

L̂ = ρ(β − ε(ρ)) − 1

2
ρ(∇ν + α∇χ + β∇η̄)2 − 1

8π
(∇χ × ∇η̄)2. (4.39)
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The above functional can be compared with Vladimirov & Moffatt’s (1995) equation
(6.12) for incompressible flows in which their I is analogous to our β . Notice however,
that while β is not a conserved quantity I is.

Varying the Lagrangian L̂ =
∫

L̂ d3x with respect to ν, α, β, χ, η, ρ leads to the
following equations:

∇ · (ρv̂) = 0, ρv̂ · ∇χ = 0, ρ(v̂ · ∇η̄ − 1) = 0,

v̂ · ∇α =
∇η̄ · Ĵ

ρ
, v̂ · ∇β = −∇χ · Ĵ

ρ
, β = 1

2
v̂

2 + w.

⎫
⎬
⎭ (4.40)

Calculations similar to those in previous subsections will show that these equations
lead to the stationary barotropic magnetohydrodynamic equations:

∇ × (v̂ × B̂) = 0, (4.41)

ρ(v̂ · ∇)v̂ = −∇p(ρ) +
(∇ × B̂) × B̂

4π
. (4.42)

5. The simplified Hamiltonian formalism
Let us derive the conjugate momenta of the variables appearing in the Lagrangian

density L̂ defined in (4.15). A simple calculation will yield

πν ≡ ∂L̂
∂(∂ν/∂t)

= −ρ, πχ ≡ ∂L̂
∂(∂χ/∂t)

= −ρα, πη ≡ ∂L̂
∂(∂η/∂t)

= −ρβ. (5.1)

The rest of the canonical momenta πρ, πα, πβ are null. It thus seems that the six

functions appearing in the Lagrangian density L̂ can be divided into ‘approximate’

conjugate pairs: (ν, ρ), (χ, α), (η, β). The Hamiltonian density Ĥ can be now
calculated as follows:

Ĥ = πν

∂ν

∂t
+ πχ

∂χ

∂t
+ πη

∂η

∂t
− L̂ = ρ

[
ε(ρ) + 1

2
v̂

2
]

+
1

8π
B̂

2
, (5.2)

in which v̂ is defined in (4.5) and B̂ is defined in (4.3). This Hamiltonian was
previously introduced by Frenkel et al. (1982) using somewhat different variables
(λ= χ, Λ = η, μ = πχ , M = πη, φ = ν). The equations derived from the above
Hamiltonian density are similar to (4.2), (4.7) and (4.10) and will not be re-derived
here. While Frenkel et al. (1982) have postulated the Hamiltonian density appearing
in (5.2), this Hamiltonian is here derived from a Lagrangian.

6. Simplified variational principle of stationary barotropic
magnetohydrodynamics

In the previous section we have shown that barotropic magnetohydrodynamics can
be described in terms of six first-order differential equations or of an action principle
from which those equations can be derived. This formalism was shown to apply to both
stationary and non-stationary magnetohydrodynamics. Although for non-stationary
magnetohydrodynamics we do not know at present how the number of functions can
be further reduced, for stationary barotropic magnetohydrodynamics the situation is
quite different. We will show that for stationary barotropic magnetohydrodynamics
three functions will suffice.
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Consider (4.25), for a stationary flow it takes the form

v · ∇χ = 0. (6.1)

Hence v can take the form

v =
∇χ × K

ρ
. (6.2)

However, the velocity field must satisfy the stationary mass conservation equa-
tion (2.3):

∇ · (ρv) = 0. (6.3)

We see that a sufficient condition (although not necessary) for v to solve (6.3) is that
K takes the form K = ∇N , where N is an arbitrary function. Thus, v may take the
form

v =
∇χ × ∇N

ρ
. (6.4)

Let us now calculate v × B in which B is given by Sakurai’s presentation (4.3):

v × B =

(
∇χ × ∇N

ρ

)
× (∇χ × ∇η)

=
1

ρ
∇χ(∇χ × ∇N) · ∇η. (6.5)

Since the flow is stationary N can be at most a function of the three comoving
coordinates χ, μ, η̄ defined in § § 4.3 and 4.4, hence

∇N =
∂N

∂χ
∇χ +

∂N

∂μ
∇μ +

∂N

∂η̄
∇η̄. (6.6)

Inserting (6.6) into (6.5) will yield

v × B =
1

ρ
∇χ

∂N

∂μ
(∇χ × ∇μ) · ∇η̄. (6.7)

Rearranging terms and using Sakurai’s presentation (4.3) we can simplify the above
equation and obtain

v × B = − 1

ρ
∇χ

∂N

∂μ
(∇μ · B). (6.8)

However, using (4.23) this will simplify to the form

v × B = −∇χ
∂N

∂μ
. (6.9)

Now let us consider (2.1); for stationary flows this will take the form

∇ × (v × B) = 0. (6.10)

Inserting (6.8) into (4.41) will lead to the equation

∇
(

∂N

∂μ

)
× ∇χ = 0. (6.11)

However, since N is at most a function of χ, μ, η̄ it follows that ∂N/∂μ is some
function of χ:

∂N

∂μ
= −F (χ). (6.12)
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This can be easily integrated to yield

N = −μF (χ) + G(χ, η̄). (6.13)

Inserting this back into (6.4) will yield

v =
∇χ × (−F (χ)∇μ + (∂G/∂η̄)∇η̄)

ρ
. (6.14)

Let us now replace the set of variables χ, η̄ with a new set χ ′, η̄′ such that

χ ′ =

∫
F (χ) dχ, η̄′ =

η̄

F (χ)
. (6.15)

This will not have any effect on the Sakurai representation given in (4.3) since

B = ∇χ × ∇η = ∇χ × ∇η̄ = ∇χ ′ × ∇η̄′. (6.16)

However, the velocity will have a simpler representation and will take the form

v =
∇χ ′ × ∇(−μ + G′(χ ′, η̄′))

ρ
, (6.17)

in which G′ = G/F . At this point one should remember that μ was defined in (4.21)
up to an arbitrary constant which can vary between magnetic field lines. Since the
lines are labelled by their χ ′, η̄′ values it follows that we can add an arbitrary function
of χ ′, η̄′ to μ without affecting its properties. Hence we can define a new μ′ such that

μ′ = μ − G′(χ ′, η̄′). (6.18)

Notice that μ′ can be multi-valued; this will be discussed in more detail in § 6.3.
Inserting (6.18) into (6.17) will lead to a simplified equation for v:

v =
∇μ′ × ∇χ ′

ρ
. (6.19)

In the following the primes on χ, μ, η̄ will be ignored. The above equation is analogous
to Vladimirov & Moffatt’s (1995) equation (7.11) for incompressible flows, in which
our μ and χ play the part of their A and Ψ . It is obvious that v satisfies the following
set of equations:

v · ∇μ = 0, v · ∇χ = 0, v · ∇η̄ = 1. (6.20)

To derive the right-hand equation we have used both (4.22) and (4.3). Hence μ, χ are
both comoving and stationary. As for η̄ it satisfies the same equation as η̄ defined in
(4.38) as can be seen from (4.40). It can be easily seen that if

basis = (∇χ, ∇η̄, ∇μ) (6.21)

is a local vector basis at any point in space then their exists a dual basis:

dual basis =
1

ρ
(∇η̄ × ∇μ, ∇μ × ∇χ, ∇χ × ∇η̄) =

(
∇η̄ × ∇μ

ρ
, v,

B
ρ

)
(6.22)

such that

basis i · dual basisj = δij , i, j ∈ [1, 2, 3], (6.23)

in which δj is Kronecker’s delta. Hence while the surfaces χ, μ, η̄ generate a local
vector basis for space, the physical fields of interest v, B are part of the dual basis.
By vector multiplying v and B and using (6.19), (4.3) we obtain

v × B = ∇χ; (6.24)
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this means that both v and B lie on χ surfaces and provide a vector basis for this
two-dimensional surface. The above equation can be compared with Vladimirov &
Moffatt (1995) equation (5.6) for incompressible flows in which their J is analogous
to our χ .

6.1. The action principle

In the first part of this section we have shown that if the velocity field v is given
by (6.19) and the magnetic field B is given by the Sakurai representation (4.3) then
(2.1), (2.2), (2.3) are satisfied automatically for stationary flows. To complete the set
of equations we will show how the Euler (2.4) can be derived from the action given in
(2.6) in which both v and B are given by (6.19) and (4.3) respectively and the density
ρ is given by (4.22):

ρ = ∇μ · B = ∇μ · (∇χ × ∇η) =
∂(χ, η, μ)

∂(x, y, z)
. (6.25)

In this case the Lagrangian density of (2.6) will take the form

L = ρ

(
1

2

(
∇μ × ∇χ

ρ

)2

− ε(ρ)

)
− (∇χ × ∇η)2

8π
(6.26)

and can be seen explicitly to depend on only three functions. Let us make arbitrary
small variations δαi = (δχ, δη, δμ) of the functions αi = (χ, η, μ). Let us define a �

variation that does not modify the αi , such that

�αi = δαi + (ξ · ∇)αi = 0, (6.27)

in which ξ is the Lagrangian displacement, thus

δαi = −∇αi · ξ , (6.28)

which will lead to

ξ ≡ − ∂ r
∂αi

δαi. (6.29)

Making a variation of ρ given in (6.25) with respect to αi will yield (2.8). Furthermore,
taking the variation of B given by Sakurai’s representation (4.3) with respect to αi

will yield (2.9). It remains to calculate δv by varying (6.19); this will yield

δv = −δρ

ρ
v +

1

ρ
∇ × (ρξ × v). (6.30)

Inserting (2.8), (2.9), (6.30) into (2.7) will yield

δL = v · ∇ × (ρξ × v) − B · ∇ × (ξ × B)

4π
− δρ

(
1
2
v2 + w

)

= v · ∇ × (ρξ × v) − B · ∇ × (ξ × B)

4π
+ ∇ · (ρξ )

(
1
2
v2 + w

)
. (6.31)

Using the well-known vector identity

A · ∇ × (C × A) = ∇ · ((C × A) × A) + (C × A) · ∇ × A (6.32)

and the theorem of Gauss we can now write (2.7) in the form

δA =

∫
dt

{∮
dS ·

[
ρ(ξ × v) × v − (ξ × B) × B

4π
+

(
1
2
v2 + w

)
ρξ

]

+

∫
d3xξ ·

[
ρv × ω + J × B − ρ∇

(
1
2
v2 + w

)]}
. (6.33)
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The time integration is of course redundant in the above expression. Also notice that
we have used the current definition (2.5) and the vorticity definition (4.32). Suppose
now that δA = 0 for a ξ such that the boundary term (including both the boundary
of the domain and relevant cuts) in the above equation is null but that ξ is otherwise
arbitrary; this entails the equation

ρv × ω + J × B − ρ∇
(

1
2
v2 + w

)
= 0. (6.34)

Using the well-known vector identity

1
2
∇(v2) = (v · ∇)v + v × (∇ × v) (6.35)

and rearranging terms we recover the stationary Euler equation

ρ(v · ∇)v = −∇p + J × B. (6.36)

6.2. The case of an axisymmetric magnetic field

Consider an axisymmetric magnetic field such that the magnetic field is dependent
only on the coordinate R, which is the distance from the axis of symmetry, and the
coordinate z, which is the distance along the axis of symmetry from an arbitrary
origin on the axis. Thus

B = B(R, z). (6.37)

Any axisymmetric magnetic field satisfying (2.2) can be represented in the form

B = ∇P × ∇
(

φ

2π

)
+ 2πRBφ∇

(
φ

2π

)
, (6.38)

in which φ is the azimuthal angle defined in the conventional way and Bφ is the
component of B in the φ-direction. The function P = P (R, z) is the flux through a
circle of radius R at height z:

P (R, z) =

∫

(R,z)

B · dS = 2π

∫ R

0

Bz(R
′, z)R′ dR′. (6.39)

For finite field configurations P will have a maximum Pm = P (Rm, zm) at some Rm, zm.
This circle R = Rm will form a line toroid with the other constant-P surfaces nearby
forming a nested set. There can be several such local maxima with local nested toroids
in a general configuration but the simpler case has just one.

Let us study the relations between the functions P, Bφ and the functions χ, η

given in (3.2). Assuming that the density ρ is axisymmetric one can see the magnetic
load defined in (4.18) is also axisymmetric and that the surfaces of constant load
are surfaces of revolution around the axis of symmetry. From (4.24) we deduce that
χ = χ(R, z). Expressing (3.2) in terms of the coordinates R, φ, z results in

B =

(
− 1

R
∂zχ∂φη

)
R̂ + (∂zχ∂Rη − ∂Rχ∂zη)φ̂ +

(
1

R
∂Rχ∂φη

)
ẑ, (6.40)

in which ∂y is a shorthand notation for ∂/∂y and ŷ is a unit vector perpendicular to
the constant-y surface. Comparing (6.40) with (6.38) we arrive at the set of equations

∂zP = ∂zχ∂φ(2πη), ∂RP = ∂Rχ∂φ(2πη), (6.41)

from which we derive the equation

∂zP ∂Rχ − ∂RP∂zχ = 0 ⇒ ∇P × ∇χ = 0. (6.42)
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Hence

P = F (χ), (6.43)

where F is an arbitrary function. We deduce that P is just another type of labelling
of the load surfaces. Thus (6.41) will lead to

∂φ(2πη) =
dP

dχ
⇒ η =

φ

2π

dP

dχ
+ η̃(R, z). (6.44)

This should be compared with the result of Yang et al. (1986). Substituting the above
result in (6.40) will lead to the equation

Bφφ̂ = (∂zχ∂Rη̃ − ∂Rχ∂zη̃)φ̂ = ∇χ × ∇η̃. (6.45)

This can also be written as

Bφ = φ̂ · (∇χ × ∇η̃) = (φ̂ × ∇χ) · ∇η̃. (6.46)

Hence Bφ is proportional to the gradient of η̃ along the φ̂ × ∇χ direction. Since φ̂ ×
∇χ is known we can integrate along this vector to obtain a non-unique solution for
η̃:

η̃ =

∫
Bφ

|φ̂ × ∇χ |
dl, (6.47)

in which dl is a line element along the φ̂ × ∇χ line.

6.3. The case of a magnetic field on a toroid

Our previous definition of the surfaces of constant load given in (4.18) is ambiguous
when the field lines are ‘surface filling’ e.g. on a toroid, and give no result when the
field lines are ‘volume filling’. At equilibrium B and v lie in surfaces (there is an
exception when B and v are parallel and fill volumes). Our former considerations
apply unchanged if these surfaces have the topology of cylinders but they need
generalization when the surfaces have the topology of toroids nested on a line (a
similar discussion in which non-magnetic fluids are considered can be found in
Lynden-Bell 1996). We consider a surface Σ spanning that line toroid. Each toroid T

will meet Σ in a loop. Consider the magnetic flux Φ(T ) through that part of Σ within
the loop and the mass enclosed by the toroid m(T ). Then the mass outside the toroid
is m̃(T ) = M − m(T ). Now express m̃ as a function m̃(Φ) of the magnetic flux Φ , then
a definition of magnetic load analogous to that for ‘cylinders’ parallel to the axis is

λ =
dm̃

dΦ
(6.48)

However, there are now two loads corresponding to the two fluxes associated with a
given toroid. The other load is obtained by taking a cut across the ‘short’ circle section
of the torus, say of constant φ. The magnetic flux Φ∗ through such a cross-section
may be expressed as a function of the total mass m(T ) within the toroid and

λ∗ =
dm

dΦ∗ (6.49)

is a second different load. Of course it is also permissible to re-express the flux Φ∗

as a function of the flux Φ; then we find

λ∗ =
dm

dΦ∗ =
dm/dΦ

dΦ∗/dΦ
= − λ

dΦ∗/dΦ
. (6.50)

The surfaces of constant λ are of course the toroids T which also have λ∗ constant.
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Figure 3. A torus of magnetic field lines.

A similar problem may arise with the definition of the magnetic metage defined in
(4.21). We may wish to define this quantity using the magnetic field B and velocity
field v. Since those vectors provide a vector basis on the load surface, they can be
combined in such a way, say B + γ (χ)v, to create a vector which is directed along
the large loop of the toroid. (A different γ will leave only twists around the short
way.) This combination represents an unwinding of the field lines so that they no
longer twist around the short (long) way. Those loops can be thought as composing
the surface Σ . Another surface Σ ′ also composed of such untwisted loops can be
so chosen that the mass between Σ and Σ ′ and between loads λ and λ + dλ is
some fixed fraction of (dm/dλ) dλ. Such Σ ′ form suitable constant-metage surfaces μ

corresponding to partial loads λ. Notice that 2πμ then describes the angle from Σ

turned around the toroid by the short way to reach any chosen point. Similar use of
the other load λ∗ allows us to define another generalized angle μ∗ measured around
the long way. A somewhat less physical approach is given below.

Let us consider a toroid of constant magnetic load. Dungey (1958) has considered
the case in which magnetic field lines lie on a torus. He has shown that one of the
functions (i.e. η) involved in the representation (3.2) should be non-single-valued and
therefore a cut should be introduced.

In order to obtain a simple looking cut we will replace the previous set of functions
μ, η with a new set φ∗, η∗, which will be defined as follows:

φ∗ ≡ μ + G(χ)η

Ω(χ)
, η∗ ≡ η − φ∗

f (χ)
, (6.51)

where G, Ω, f are arbitrary functions of χ . Therefore μ and η can be given in terms
of φ∗, η∗ as

η = φ∗ + f (χ)η∗, μ = −G(χ)η + Ω(χ)φ∗; (6.52)

η∗ can be considered as an angle varying over the small circle of the torus, while
φ∗ can be considered as an angle varying over the large circle of the torus as in
figure 3. On the torus of constant magnetic load the φ∗, η∗ functions have a simple
‘cut’ structure. The above equation can also serve as a ‘definition’ of μ. Inserting
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(6.52) into (3.2) and (6.19) will result in the following set of equations:

B = ∇χ × ∇φ∗ + f (χ)∇χ × ∇η∗,

v = G(χ) B
ρ

+ Ω(χ) ∇φ∗×∇χ

ρ
.

}
(6.53)

Hence B is partitioned into two vectors circulating along the small and large circles
of the torus, while v has two vector components, one along the magnetic field B and
another along the small circle.

7. Topological constants of motion
Magnetohydrodynamics is known to have the following two topological constants

of motion: one is the magnetic helicity

HM ≡
∫

B · A d3x, (7.1)

which is known to measure the degree of knottiness of lines of the magnetic field
B Moffatt (1969). The domain of integration in (7.1) is the entire space; obviously
regions containing a null magnetic field will have a null contribution to the integral.
In the above equation A is the vector potential defined implicitly by

B = ∇ × A. (7.2)

The other topological constant is the magnetic cross-helicity:

HC ≡
∫

B · v d3x, (7.3)

characterizing the degree of cross-knottiness of the magnetic field and velocity lines.
The domain of integration in (7.3) is the magnetohydrodynamic flow domain.

7.1. Representation in terms of the magnetohydrodynamic potentials

Let us write the topological constants given in (7.1) and (7.3) in terms of the
magnetohydrodynamic potentials α, β, χ, η, ν, ρ introduced in previous sections.

First let us combine (3.2) with (7.2) to obtain the equation

∇ × (A − χ∇η) = 0; (7.4)

this leads immediately to the result

A = χ∇η + ∇ζ, (7.5)

in which ζ is some function. Let us now calculate the scalar product B · A:

B · A = (∇χ × ∇η) · ∇ζ. (7.6)

However, since we have the local vector basis (∇χ, ∇η, ∇μ) we can write ∇ζ as

∇ζ =
∂ζ

∂χ
∇χ +

∂ζ

∂μ
∇μ +

∂ζ

∂η
∇η. (7.7)

Hence we can write

B · A =
∂ζ

∂μ
(∇χ × ∇η) · ∇μ =

∂ζ

∂μ

∂(χ, η, μ)

∂(x, y, z)
. (7.8)

Let us think of the entire space outside the magnetohydrodynamic domain as
containing low-density matter; in this case we can define the metage μ over the
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entire portion of space containing magnetic field lines and the integration domain of
(7.1) and (7.3) coincide. Now we can insert (7.8) into (7.1) to obtain the expression

HM =

∫
∂ζ

∂μ
dμ dχ dη. (7.9)

Note that in some scenarios it may be that the flow domain should be divided
into patches in which different definitions of μ, χ, η apply to different domains; we
do not see this as a limitation for our formalism since the topology of the flow is
conserved by the equations of magnetohydrodynamics. In those cases HM should
be calculated as the sum of the contributions from each patch. We can think of the
magnetohydrodynamic domain as composed of thin closed tubes of magnetic lines
each labelled by (χ, η). Performing the integration along such a thin tube in the
metage direction results in ∮

χ,η

∂ζ

∂μ
dμ = [ζ ]χ,η, (7.10)

in which [ζ ]χ,η is the discontinuity of the function ζ along its cut. Thus a thin tube of
magnetic lines in which ζ is single-valued does not contribute to the magnetic helicity
integral. Inserting (7.10) into (7.9) will result in

HM =

∫
[ζ ]χ,η dχ dη =

∫
[ζ ] dΦ, (7.11)

in which we have used (4.30). Hence

[ζ ] =
dHM

dΦ
, (7.12)

and the discontinuity of ζ is thus the density of magnetic helicity per unit of magnetic
flux in a tube. We deduce that the Sakurai representation does not entail zero
magnetic helicity, rather it is perfectly consistent with non-zero magnetic helicity as
was demonstrated above and in agreement to the claims made by Frenkel et al. (1982).
Notice however, that the topological structure of the magnetohydrodynamic flow
constrains the gauge freedom which is usually attributed to vector potential A and
limits it to single-valued functions. Moreover, while the choice of A is arbitrary since
one can add to A an arbitrary gradient of a single-valued function which may lead to
different choices of ζ , the discontinuity value [ζ ] is not arbitrary and has a physical
meaning given above.

Let us now introduce the velocity expression (4.5) and calculate the scalar product
of B and v; using the same arguments as in the previous paragraph will lead to the
expression

v · B =
∂ν

∂μ
(∇χ × ∇η) · ∇μ =

∂ν

∂μ

∂(χ, η, μ)

∂(x, y, z)
. (7.13)

Inserting (7.13) into (7.3) will result in

HC =

∫
∂ν

∂μ
dμ dχ dη. (7.14)

We can think of the magnetohydrodynamic domain as composed of thin closed tubes
of magnetic lines each labelled by (χ, η). Performing the integration along such a thin
tube in the metage direction results in

∮

χ,η

∂ν

∂μ
dμ = [ν]χ,η, (7.15)
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in which [ν]χ,η is the discontinuity of the function ν along its cut. Thus a thin tube
of magnetic lines in which ν is single-valued does not contribute to the cross-helicity
integral. Inserting (7.15) into (7.14) will result in

HC =

∫
[ν]χ,η dχ dη =

∫
[ν] dΦ, (7.16)

in which we have used (4.30). Hence

[ν] =
dHC

dΦ
, (7.17)

and the discontinuity of ν is thus the density of cross-helicity per unit of magnetic flux.
We deduce that a flow with null cross-helicity will have a single-valued ν function or
alternatively a non-single-valued ν will entail a non-zero cross-helicity. Furthermore,
from (4.7) it is obvious that

d[ν]

dt
= 0. (7.18)

We conclude that not only is the magnetic cross-helicity conserved as an integral
quantity of the entire magnetohydrodynamic domain but also the (local) density of
cross-helicity per unit of magnetic flux is a conserved quantity as well.

In the following subsections we give simple examples which will demonstrate some
of the general assertions of this paragraph.

7.2. A helical stratified magnetic field

Consider a magnetohydrodynamic flow of uniform density ρ. Furthermore assume
that the flow contains a helical stratified magnetic field:

B =

{
2B⊥(1 − R/a)φ̂ + Bz0 ẑ, R < a,

0, R > a,
(7.19)

in which R, φ, z are the standard cylindrical coordinates, R̂, φ̂, ẑ are the corresponding
unit vectors and Bz0, B⊥ are constants. The magnetic field is contained in a cylinder
of Radius a and is independent of z. A possible choice of the vector potential A is:

A =

{
Bz0x ŷ + B⊥a(1 − R/a)2 ẑ, R < a,

0, R > a,
(7.20)

in which ŷ is a unit vector in the y-direction. Let us calculate the magnetic helicity
of the field using (7.1). In order to obtain a finite magnetic helicity we assume that
the field is contained between the planes z = 0 and z = 1; furthermore we assume
that the planes z = 0 and z = 1 can be identified such that the magnetic field lines are
closed. Thus the domain becomes a topological torus. Inserting (7.19) and (7.20) into
(7.1) will result in

HM ≡
∫

B · A d3x =
π

3
a3Bz0B⊥. (7.21)

First let us calculate to load using (4.18) (we assume that R < a in the following
calculations); we obtain

λ = ρ
4πB⊥(1 − R/a)R + Bz0

B2
z0 + 4B2

⊥(1 − R/a)2
= λ(R). (7.22)
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hence the load surfaces are cylinders. The χ function can now be calculated according
to (4.24) to yield the value

χ = 1
2
Bz0R

2. (7.23)

Solving (4.29) for η we obtain the following non-unique solution:

η =
2B⊥

Bz0

(
1 − R

a

)
z

a
+ φ. (7.24)

Substituting (7.23), (7.24) and (7.20) into (7.5) we can solve for ζ and obtain

ζ = B⊥z(a − R) + 1
2
Bz0xy. (7.25)

Since we have identified the z = 0 and z = 1 planes the z coordinate is not single-
valued and therefore ζ is a non-single-valued function which has a discontinuity
value:

[ζ ] = B⊥(a − R). (7.26)

Thus we can calculate the magnetic helicity using (7.11) and obtain

HM =

∫
[ζ ] dΦ =

π

3
a3Bz0B⊥, (7.27)

which coincides with the result of (7.9).

7.3. Self-knotted magnetic field lines on nested tori

Consider a magnetohydrodynamic flow of uniform density ρ. Furthermore assume
(following Moffatt 1969) that the flow contains a vector potential:

A = ∇Ψ × ∇φ + αΨ ∇φ =
1

R
∂RΨ ẑ − 1

R
∂zΨ R̂ +

αΨ

R
φ̂, ∇φ =

φ̂

R
, (7.28)

in which as in the previous section R, φ, z are the standard cylindrical coordinates,
R̂, φ̂, ẑ are the corresponding unit vectors, α is constant and Ψ = Ψ (R, z) is an
arbitrary function of R and z. The magnetic field can be calculated using (7.2) to be

B =
α

R
∂RΨ ẑ − α

R
∂zΨ R̂ − D2Ψ

R
φ̂, (7.29)

in which according to Moffatt (1969) the operator D2 is defined as

D2 = ∂2
z + R∂R

(
1

R
∂R

)
. (7.30)

Obviously both A and B lie on the Ψ surfaces since

∇Ψ · A = ∇Ψ · B = 0. (7.31)

Let us define the variable r:

r =
√

z2 + (R − 1)2. (7.32)

And let us assume that Ψ = Ψ (r). In this case surfaces of constant Ψ are nested tori.
The magnetic field is assumed to be confined between the tori 0 � r � a in which a

is an arbitrary number such that 0 < a < 1. A depiction of an R, z cross-section of
the nested tori is given in figure 4. A typical field line of the magnetic field given in
(7.29) is self-knotted in the sense of Moffatt (1969) as is evident from figure 5.

Next, following § 6.3 we define two functions with simple cuts φ∗ and η∗, in which
η∗ can be considered as an angle varying over the small circle of the torus, while φ∗
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Figure 4. R, z cross-section of the nested tori.
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Figure 5. A numerically integrated field line assuming that Ψ = r + r3, α = 1 and starting
from the point R = 0.6, φ = 0, z = 0. The plot shows twenty rotations.

can be considered as an angle varying over the large circle of the torus. Hence φ∗ = φ

is just the standard azimuthal angle and η∗ can be defined as

η∗ = arctan
z

R − 1
. (7.33)

Obviously the Ψ surfaces are also the λ surfaces. Therefore we can calculate χ using
(4.24) where we calculate the magnetic flux into the surface between the degenerate
torus r = 0 and any other torus given by some value of Ψ . There are two ways to do
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Figure 6. (a) I (r, η∗) and (b) II (r, η∗) for r = 0.95.

this but it seems that the simpler way is to take the surface that is perpendicular to
η̂∗ which is a unit vector in the η∗-direction. Hence we obtain

χ =
1

2π

∫
B · dS =

1

2π

∮
A · dl =

1

2π

∫ 2π

0

AφR dφ = AφR = αΨ. (7.34)

In the above we assumed that Ψ (0) = 0. Let us now calculate the function η by solving
(4.29). It is easy to show that η is of the form

η = φ + C(z, R), (7.35)

in which C(z, R) is a solution of

Bφ = ∂zχ∂RC − ∂zχ∂zC. (7.36)

Writing the above equation in terms of r, η∗ coordinates we obtain

− 1

1 + r cos η∗

(
Ψ ′′ +

1

1 + r cos η∗
Ψ ′

r

)
= −αΨ ′

r
∂η∗C,

(7.37)

Ψ ′ ≡ dΨ

dr
, Ψ ′′ ≡ d2Ψ

dr2
.

C can be integrated to yield the solution

C =
1

α

[
rΨ ′′

Ψ ′ I (r, η∗) + II (r, η∗)

]
, (7.38)

in which

I (r, η∗) ≡
∫

dη∗

1 + r cos η∗

=
2√

1 − r2

[
arctan

(√
1 − r

1 + r
tan

(
η∗

2

))
+

{
0, 0 � η∗ < π
π, π � η∗ < 2π.

]
(7.39)

and

II (r, η∗) ≡
∫

dη∗

(1 + r cos η∗)2
=

I (r, η∗)

1 − r2
− r sin η∗

(1 − r2)(1 + r cos η∗)
. (7.40)

Plots of I (r, η∗) and II (r, η∗) are given in figures 6(a) and 6(b) respectively. Obviously
I (r, η∗) and II (r, η∗) are non-single-valued functions. Their discontinuity values across
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the cut are given by

[I (r, η∗)] =
2π√

1 − r2
, [I (r, η∗)] =

2π

(1 − r2)3/2
. (7.41)

Therefore C(r, η∗) is also a non-single-valued function. Using (7.38) we obtain the
following discontinuity value of C(r, η∗) across the cut:

[C] =
2π

α
√

1 − r2

(
rΨ ′′

Ψ ′ +
1

1 − r2

)
. (7.42)

It remains to calculate the value of the function ζ ; this can be done using (7.5).
Inserting into (7.5) the value of η given in (7.35), we obtain

A = χ∇η + ∇ζ =
αΨ

R
φ̂ + αΨ ∇C + ∇ζ. (7.43)

Taking into account (7.28) in (7.43) leads to

∇ζ =
1

R
∂RΨ ẑ − 1

R
∂zΨ R̂ − αΨ ∇C. (7.44)

The above equation implies that ζ is a function of R, z (or r, η∗) only. Writing (7.44)
in terms of the r, η∗ coordinates we arrive at a set of two equations:

1

r
∂η∗ζ = −αΨ

r
∂η∗C +

Ψ ′

1 + r cos η∗ , ∂rζ = −αΨ ∂rC. (7.45)

Solving (7.45) we arrive at the solution

ζ (r, η∗) = rΨ ′I (r, η∗) − αΨ C = rI (r, η∗)

(
Ψ ′ − Ψ Ψ ′′

Ψ ′

)
− Ψ II (r, η∗). (7.46)

Obviously ζ (r, η∗) is a non-single-valued function with the following discontinuity
value across the cut:

[ζ (r, η∗)] =
2π√

1 − r2

(
r(Ψ ′ − Ψ Ψ ′′

Ψ ′ ) − Ψ

1 − r2

)
. (7.47)

Let us calculate the magnetic helicity of the field using (7.11), (7.47) and (7.34); we
arrive at the result

HM =

∫
[ζ ]dΦ =

∫ a

0

[ζ ]2παΨ ′ dr

= (2π)2α

∫ a

0

dr√
1 − r2

(
r((Ψ ′)2 − Ψ Ψ ′′) − Ψ Ψ ′

1 − r2

)
. (7.48)

A direct calculation using (7.1) will yield an identical result. This integral can be
calculated either analytically or numerically for any reasonable function Ψ (r). For
example taking Ψ (r) = r +r3 and a = 0.9 we calculated HM numerically and obtained
HM = −4.6167(2π)2α. To conclude: we do not see any principle difficulty in calculating
the functions defined in this work for self-knotted magnetic field lines. It may be that
the functions should be derived numerically if the nested tori are distorted.

7.4. Cross-helicity conservation via the Noether theorem

The conservation of helicity
∫

v · ω d3x in ideal (non-magnetic) barotropic fluid when
certain conditions are satisfied, in particular when ω · n = 0 on the (Lagrangian) surface
bounding the volume of integration, was discovered by Moffatt (1969). Moreau (1977)
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has discussed the conservation of helicity from the group-theoretical point of view.
In his paper he used an enlarged Arnold symmetry group Arnold (1966) of fluid
element labelling to generate the conservation of helicity. Yahalom (1994, 1995, 1996)
has shown that the symmetry group generating conservation of helicity becomes a
very simple one-parameter translation group in the space of labels (alpha space)
when represented by Lynden-Bell & Katz (1981) labelling. We will now show that
in the case of magnetohydrodynamics the same one-parameter translation group will
generate the magnetic cross-helicity via the Noether theorem.

Let us denote the initial position of a fluid element by (xk
0 ), then by mass

conservation

ρ(xk)d3x = ρ
(
xk

0

)
d3x0 = ρ

(
xk

0

)∂
(
x1

0 , x
2
0 , x

3
0

)

∂(α1, α2, α3)
d3α. (7.49)

Since the initial position of a fluid element cannot depend on time it must depend on
the label only, and therefore by an appropriate choice of the α we obtain

ρ(xk) d3x = d3α, ρ =
∂(α1, α2, α3)

∂(x1, x2, x3)
. (7.50)

where we assume that the above expressions of course exist. Let us look at the action
A defined in (2.6).

From the discussion following (2.15) we know that if the ξ variations disappear at
times t0, t1 then A is extremal only if Euler’s equations are satisfied and the boundary
term disappears. If on the other hand we make a symmetry displacement, i.e. a
displacement that makes δA vanish, and assume that Euler’s equations are satisfied
and the boundary term disappears, we obtain

∫

V

v · ξ d3α = const. (7.51)

This is Noether’s theorem in its fluid mechanical form.
The α chosen so as to satisfy (7.50) are not unique, in fact one can always choose

another set of variables, say α̃ such that

∂(α̃1, α̃2, α̃3)

∂(α1, α2, α3)
= 1. (7.52)

It is quite clear that if the domain of integration is not modified any new set of α

satisfying (7.52) can be chosen without affecting the value of the Lagrangian L. This is
nothing but Arnold’s (1966) alpha-space symmetry group under which L is invariant
(see also Katz & Lynden-Bell 1985). For some flows the domain of integration can
be modified without affecting L, and in that case we have additional elements in our
symmetry group. If we make only small changes δα then we can define the group as
follows:

∂δαk

∂αk

= 0, δα · n|surface = 0, (7.53)

where n is a unit vector orthogonal to the surface of the alpha-space volume which
we integrate over. The restriction δα · n|surface = 0 is only needed when the infinitesimal
transformation changes the domain of integration in such a way as to modify L. In
this paper we are interested in the subgroup of translation, i.e.

δαk = ak, ak = const . (7.54)
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This subgroup of course does not satisfy δα · n|surface = 0 unless at least few of the α

are cyclic or L is not affected by the modification of domain.
In § 4.3 we have defined the following three parameters: the magnetic load λ, the

magnetic metage μ and η. Notice that since the magnetic lines are closed μ is an
angular variable and we can translate it with out changing L. Choosing αk = χ, η, μ,
and inserting those variables into (7.50) we re-derive (6.25).

The appropriate ξ symmetry displacement associated with the infinitesimal change
in αk is given by (6.29). For a metage displacement ξ takes the form

ξ = − ∂ r
∂μ

δμ = −δμ
B
ρ

. (7.55)

Inserting this expression into the boundary term in (2.15) will result in

δAB =

∫
dt

∮
dS ·

[
B

(
1
2
v2 − w(ρ)

)
− v(v · B)

]
= 0, (7.56)

which is indeed Moffatt’s condition for magnetic cross-helicity conservation (Moffatt
1969) as expected. Inserting (7.55) into (7.51) we obtain the conservation law

∫

V

v · ∂ r
∂μ

d3α =

∫

V

v · B d3x = HC. (7.57)

Thus we conclude that the alpha translation group in the direction of μ generates
conservation of helicity. (One could of course introduce the symmetry displacement
ξ = ε B/ρ; however, in this case one should show that the above displacement is a
symmetry group displacement which is not obvious if we do not take into account
Arnold’s group and the Lynden-Bell & Katz labelling. Moreover in coordinate space
the symmetry group appears arbitrary and complex depending on the flow considered
as opposed to its apparent simplicity in alpha space).

8. Conclusion
In this paper we have reviewed variational principles for barotropic magneto-

hydrodynamics given by previous authors both in Lagrangian and Eulerian form.
Furthermore, we have introduced our own Eulerian variational principles from which
all the relevant equations of barotropic magnetohydrodynamics can be derived and
which are in some sense simpler than those considered earlier. The variational principle
was given in terms of six independent functions for non-stationary flows and three
independent functions for stationary flows. This is less than the seven variables which
appear in the standard equations of magnetohydrodynamics, which are the magnetic
field B the velocity field v and the density ρ.

The equations in the non-stationary case have some resemblance to the equations
deduced in a previous paper by Frenkel et al. (1982). However, in that previous work
the equations were deduced from a postulated Hamiltonian. In the current work we
show how this Hamiltonian can be obtained from our simplified Lagrangian using
the canonical Hamiltonian formalism.

The appearance of a non-zero magnetic helicity and cross-helicity is connected with
the fact that some of the functions which we defined are non-single-valued. This was
elaborated to some extent in § 7 and was connected to the properties of the functions
ζ, ν. We have also shown that the density of cross-helicity per unit of magnetic flux
is also a conserved quantity and is equal to the discontinuity of ν. Furthermore, we
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have shown that the conservation of cross-helicity can be deduced using the Noether
theorem from the symmetry group of magnetic metage translations.

It should be emphasized that for non-trivial topologies it is necessary to assume
that some of the variables introduced in the non-stationary formalism are non-single-
valued. That is, it is necessary to introduce a number of branch cuts in order to define
single-valued branches of the field variables. In turn, these cuts along with the six
field variables constitute an extended number of dynamic variables. The number of
necessary cuts depends on the flow.

The problem of stability analysis and the description of numerical schemes using
the described variational principles exceed the scope of this paper. We suspect that
to achieve this we will need to add additional constants of motion constraints to the
action as was done by Arnold (1965a, b); see also Yahalom, Katz & Inagaki (1994)
hopefully this will be discussed in a future paper.

The authors would like to thank Professor H. K. Moffatt for a useful discussion.
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